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1. Introduction

My research lies in the intersection of model theory and combinatorics. Model theory provides several
dividing lines separating tame from wild behavior in certain classes of (infinite) structures. Much of my
research has been an interplay between purely model-theoretic results about these dividing lines and their
application to the combinatorics of hereditary classes of (finite) structures, i.e. classes closed under taking
substructures. These applications include both solutions to concrete problems such as classification and
enumeration, and results broadly describing the “geography” of such classes (see Figure 1 for a partial map).

The sparsity program of Nešetřil and Ossona de Mendez, with its central nowhere dense/somewhere dense
dividing line for the more restricted setting of monotone graph classes, has yielded innumerable structural
and algorithmic results, and many researchers are actively searching for an analogous dividing line in general
hereditary classes, which would also capture dense graphs. A favored approach is to use the observation of [1]
that in monotone graph classes, nowhere denseness is equivalent to the classical model-theoretic dividing
lines of stability and NIP, as well as the stronger and less-studied variants monadic stability and monadic
NIP, and to thus try to understand these properties in hereditary classes.

In my work, joint with Laskowski [9], we have given several characterizations of monadic NIP in first
order theories (Theorem 2.3), including the behavior of an independence relation (generalizing e.g. linear
independence), the ability to decompose infinite models into a sequence of independent pieces, and a single
structure that serves as a canonical obstruction. More recently [10], we have improved these results in
the setting of hereditary classes, which for example shows that monadic NIP and NIP agree in hereditary
classes, as do stability and monadic stability (Theorem 2.4). This gives an explanation for the appearance in
hereditary classes of these monadic variants of classical dividing lines, and simplifies the landscape by showing
there are only two model-theoretic generalizations of nowhere denseness to consider, rather than four.

For an application of such results to a concrete problem, I had used earlier analogous characterizations of
monadic stability to confirm some conjectures of Peter Cameron and Dugald Macpherson [13,19, 20] on orbit
counting. Generalizing the classical problem of counting orbits of a finite group action, let a group G act on a
countable set and define the function fG(n) counting the number of orbits on n-sets. Many familiar sequences
appear as such functions, and their asymptotic behavior is seemingly tightly constrained, exhibiting narrow
bands with large gaps between them. In [5], I proved the existence of these gaps and nearly completely
classified the possible sub-exponential asymptotics of fG(n) (Theorem 2.1), by identifying the group G with
the automorphism group of a highly symmetric countable structure M and showing the model-theoretic
complexity of M controls the asymptotics of fG(n), with jumps in one giving jumps in the other.

This problem intersects another strand of my research, which is to study the automorphism groups of highly
symmetric (i.e. ω-categorical) countable structures as above, and how their dynamical or group-theoretic
properties relate to the model theory of the structure and to the combinatorics of its finite substructures. For
example, in [7] we classify certain Aut(M)-invariant measures on ω-categorical M arising in model theory
using the dynamics of Aut(M) and extremal combinatorics on the finite substructures of M (§3.1.3).

The extra constraint of ω-categoricity makes a fine structural understanding of certain model-theoretic
classes feasible, and historically these analyses have given rise to concepts and techniques leading to an
understanding of these model-theoretic classes in broader generality. In this line, and ultimately jointly with
Pierre Simon, I have provided a full classification of certain ω-categorical structures (Theorem 3.1), showing
how the presence of linear orders in NIP theories gives very strong structural information.

This makes the classification of ω-categorical monadically NIP theories a natural target, which should
develop tools for understanding the structure of models of (monadically) NIP theories in general. Indeed, my
results on monadic NIP mentioned at the beginning were spurred by the following conjecture connecting it to
asymptotic enumeration, structural graph theory, algorithmic complexity, and monadic second-order logic.

Conjecture 1. Let M be an ω-categorical structure and C be the hereditary class of substructures of M .
Then the following are equivalent.

(1) M is monadically NIP.
(2) fAut(M)(n) = O(cn) for some c ∈ R.
(3) C is well-quasi-ordered by the substructure relation, i.e. it contains no infinite antichain.
(4) C has finite clique-width.
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(5) First-order model checking in C is fixed-parameter tractable.
(6) M has a decidable monadic second-order theory.

Figure 1. ([23]) Inclusions of some properties of graph classes. Example classes are given in parentheses.

2. Model theory and tame hereditary classes

A hereditary class of relational structures, i.e. one closed under taking substructures, admits many
measures of combinatorial complexity or tameness: the size of the class (e.g. the asymptotics of the number
of structures of size n for each n), the complexity of (bi-)embeddability (e.g. an infinite antichain under
embedding), some notion of bounded width (e.g. bounded tree-width), admitting efficient algorithms to
generally intractable problems, and so on. Ultimately, we would like a structure theory for the tame classes
describing how structures in the class can be decomposed into simple parts, and from which other tameness
results follow.

Model theory provides another way to determine the complexity of hereditary classes based on which
other hereditary classes they can define, and has benchmark properties for separating the tame classes from
the wild. Such properties include NFCP, stability, NIP, and their monadic variants that also require these
properties to be preserved under arbitrary expansions by unary predicates (i.e. arbitrary colorings of points).
Ideally, some such model-theoretic property corresponds to the divide between tame and wild behavior for a
combinatorial complexity property under study, and this can be proved in two steps: If the model-theoretic
property fails, then this is witnessed by the presence of a canonical structure that can be manipulated to
produce the wild behavior. If the model-theoretic property holds, then this gives additional information,
often in the form of the behavior of a suitable independence relation, that can be used to decompose the
structures into independent pieces, yielding the desired structure theory.
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2.1. Selected completed work. We start with two examples of the ideal framework outlined above. The
first is the theorem on the orbit-counting function fG(n) mentioned in the introduction, which can also
be viewed as counting the structures of size n in certain hereditary classes. The sharp division between
subexponential growth and growth at least ϕn corresponds to monadic stability, and the different behaviors
in the subexponential growths correspond to the parenthetical properties.

Theorem 2.1 ([5], B.). Let a group G act on a countable set X. If fG(n) = o (ϕn), for ϕ the golden ratio,
then fG(n) = o(cn) for every c > 1. Furthermore, one of the following holds.

(1) (Cellularity) There are c > 0, k ∈ N such that fG(n) ∼ cnk.

(2) (Monadic stability, Morley rank 2) There are c > 0, k ∈ N such that fG(n) = e

(
Θ
(
n1− 1

k

))
.

(3) (Monadic stability, Morley rank r + 2) Let logr(n) denote the r-fold iterated logarithm. There are

c > 0 and k, r ∈ N such that fG(n) = e

(
Θ

(
n

(logr(n))1/k

))
.

For another complexity measure of a hereditary class C, let Sibling(C) be the largest cardinal κ such that
there is a countable M ∈ C and κ many structures (up to isomorphism) are bi-embeddable with M . When C
is a simple class, κ should be small, since bi-embeddability will (nearly) imply isomorphism. With Laskowski,
we proved the following, confirming conjectures from [18]. Again, we see sharp divisions in the complexity as
measured by Sibling(C), and these divisions are proved by finding corresponding model-theoretic properties.

Theorem 2.2 ([8], B., Laskowski). Suppose C is a hereditary class in a finite relational language, and let
Sibling(C) be as in the paragraph above. Then one of the following holds.

(1) C is finitely partitioned and Sibling(C) = 1.
(2) C is cellular and Sibling(C) = ℵ0.
(3) C is non-cellular and Sibling(C) = 2ℵ0 .

Such applications need an understanding of the corresponding model-theoretic property and its failure.
With Laskowski, we proved several characterizations of monadic NIP, stated vaguely below. The various
characterizations all indicate that models of monadically NIP theories are coarsely “linear order-like”.

Theorem 2.3 ([9] B., Laskowski). The following are equivalent for a complete theory T (vaguely stated).

(1) T is monadically NIP.
(2) The independence relation induced by finite satisfiability has additional properties.
(3) Models of T do not encode a particular grid-like structure.
(4) Models of T can be decomposed into a linear sequence of independent sets.
(5) A type-counting bound, similar to bounding the linear clique-width of models by a cardinal.
(6) Indiscernible sequences behave well after naming parameters.

Recently, we have sharpened Theorem 2.3 in the case of universal theories by partially working in the setting
of existentially closed structures. One application is the following theorem, tidying the “model-theoretic map”
of hereditary classes. The third part answers questions from [1,21].

Theorem 2.4 ([10] B., Laskowski). Let C be a hereditary class of relational structures.

(1) C is stable if and only if C is monadically stable.
(2) C is NIP if and only if C is monadically NIP.
(3) Furthermore, if C is monotone (a generalization of closure under graph-theoretic subgraph), then all

four of these properties agree.

2.2. Future work. We mention a few directions in the main goal of further understanding (monadic) stability
and NIP in hereditary classes, and how they relate to notions and constructions from structural graph theory.

2.2.1. Structural graph theory.
One direction is to try to characterize stable/NIP graph classes using notions from structural graph theory,
such as low covers or forbidden shallow vertex minors. Low covers are roughly a means of considering graph
classes that locally have a particular property. They are a powerful tool for reducing problems to simpler
classes, and seem to be a fundamental construction. For example, starting from bounded treedepth, nϵ-low
covers yield nowhere denseness and O(1)-low covers yield bounded expansion (see Figure 1), which is the
other main dividing line in the sparsity program. The model-theoretic result behind Theorem 2.4 allow us
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to lift local to global structure and show that low covers preserve stability and NIP (confirming a tentative
arrow in Figure 1, and much more) [11], and thus they are natural properties for this construction.

Question 1. Can stability and NIP be characterized in terms of admitting low covers from better-understood
properties? For example, is a hereditary class NIP if and only if it admits nϵ-low twin-width covers?

In addition to low covers, another way to reduce questions about a class C to a class D is to show that C
can be defined in a unary expansion of D. The major conjecture here is the following, which would collapse
“monadically stable” to “structurally nowhere dense” in Figure 1. For example, the figure shows this would
imply the conjecture that monadically stable classes have low VC-density.

Conjecture 2. Every stable graph class is definable in a unary expansion of a nowhere dense class.

2.2.2. Analytic limits of finite structures.
These limits attempt to assign a continuum-sized structure to a sequence of finite structures, where analytic
methods can be applied to obtain asymptotic combinatorial results. Given a fragment X ⊆ FO of first
order logic and a suitably convergent class, the X-modeling limits of Nešetřil and Ossona de Mendez provide
a relational structure on a standard Borel probability space in which all X-definable sets are measurable.
For quantifier-free formulas, the convergence notion agrees with the left convergence for graphons, while for
local formulas with one free variable it agrees with the local convergence of Benjamini-Schramm. Thus FO-
modelings simultaneously strengthen both of these notions, and make sense for graph classes of intermediate
edge-density. It is known that every nowhere dense graph class admits an FO-modeling limit [22], but it is
open for monadically stable and monadically NIP classes, which would be the optimal possible result.

Conjecture 3. Let C be a monadically NIP graph class. Then C admits an FO-modeling limit.

In joint work on this conjecture, ongoing with Nešetřil and Ossona de Mendez, we make heavy use of
pseudofinite model theory, working in an ultraproduct of structures from C equipped with the ultralimit of
the counting measures on definable sets and using results from stability theory there. Even in the nowhere
dense setting, this promises to yield a cleaner proof, and prompts the following general question.

Question 2. To what extent can pseudofinite methods be used to derive finitary results about monadically
stable/NIP classes from the (cleaner) infinitary model-theoretic results?

2.2.3. Geometric group theory and large-scale geometry.
The mapping class group of a surface encodes information about its self-homeomorphisms, and provides a
means for applying geometric group theory to topology. It is often studied via the surface’s curve graph,
whose automorphism group is the mapping class group. In [16], the model theory of the curve graph is
analyzed and it is shown to be ω-stable, a property of incomparable strength to monadic stability. However,
the behavior of model-theoretic independence proved there suggests the following, which is known in the
simple case of the Farey graph.

Conjecture 4. Let G be the curve graph of a surface of finite type. Then G is monadically stable.

Another direction would be to show that monadic stability and NIP are preserved by quasi-isometry, and
thus provide a property of Cayley graphs that is independent of the choice of generating set. This was shown
for property of “bounded twin-width” [3], which coincides with monadic NIP for linearly ordered graphs,
and was then used to produce a counterexample to a combinatorial conjecture. While all graphs of bounded
degree are monadically stable, and so this does not give an interesting invariant for finitely-generated groups,
it would potentially give an interesting invariant for infinitely-generated groups, such as the mapping class
groups of surfaces of infinite type.

3. ω-categorical and homogeneous structures

3.1. Completed work.

3.1.1. Classification.
The connections between properties of ω-categorical structures, of their automorphism groups, and of
their finite substructures are intensively studied, relating model theory, dynamics, and combinatorics. The
classification of homogeneous structures in a fixed language, which are defined by the property of having all
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finite partial automorphisms extend to full automorphisms, is a key source of examples for this field, since a
classification will lead to any exotic structures of the given type that may exist.

Answering a question of Peter Cameron [14], I undertook the classification of homogeneous structures in a
language with n linear orders. After constructing conjectural list, with structures built by adding orders in
definite ways to Λ-ultrametric spaces, a generalization of ultrametric spaces allowing the distance to take
values in a distributive lattice Λ, I confirmed the conjectured classification for all n in joint work with Pierre
Simon. Although such classifications typically rely on extensive amalgamation arguments, our proof instead
primarily relied on model-theoretic results constraining linear orders in ω-categorical structures [26].

Theorem 3.1 ([12] B., Simon). The homogeneous structures in a language of finitely many linear orders are
as conjectured, i.e. they are interdefinable with expansions of Λ-ultrametric spaces by certain linear orders.

This was the first step extending the analysis of [26] beyond the setting of thorn-rank 1. The finite
rank setting was later addressed in [25]. The case of finitely homogeneous monadically NIP structures as
considered in Conjecture 1 is the natural next step beyond finite rank, allowing for tree-like structures. In
another outcome from Theorem 3.1, Λ-ultrametric spaces were a motivating example for the definition of
semigroup-valued metric spaces [17]. These are conjectured to account for all homogeneous structures in a
language with symmetric binary relations, providing a unified view of seemingly diverse structures.

3.1.2. Ramsey theory.
Ramsey’s theorem is widely used in model theory and combinatorics to extract a well-behaved substructure
from a large, complicated structure. Nešetřil and Rödl began the study of Ramsey classes [24], significantly
generalizing Ramsey’s theorem.

Definition 3.2. Let K be a class of structures. Given A,B ∈ K, let
(
B
A

)
be the set of substructures of B

that are isomorphic to A. We say K is a Ramsey class if for any n ∈ N and A,B ∈ K, there is a C ∈ K such

that if
(
C
A

)
is n-colored, there is a B̂ ∈

(
C
B

)
such that

(
B̂
A

)
is monochromatic.

Under a mild condition, a Ramsey class must consist of the substructures of a homogeneous structure.
One of the main questions of the subject is whether every finitely relational homogeneous structure can be
expanded by adding finitely many relations so its substructures form a Ramsey class.

In [4], I identified the minimal Ramsey expansion for the Λ-ultrametric spaces from Theorem 3.1, i.e. the
relations that must be added to make the class of substructures Ramsey, and provided a restatement in
terms of topological dynamics. The theorem now provides a blueprint for finding Ramsey expansions for
other classes with non-refining definable equivalence relations, and gives one of few classes with non-unary
algebraic closure whose Ramsey expansion has been found.

Theorem 3.3 ([4], B.). Let Λ be a finite distributive lattice and Γ be the generic homogeneous Λ-ultrametric
space, with finite substructures AΛ. The minimum Ramsey expansion of AΛ is explicitly given, which is
equivalent to determining the universal minimal flow of Aut(Γ). Furthermore, every homogeneous structure
from Theorem 3.1 is a Ramsey expansion of such a Γ.

In the topic of finite big Ramsey degrees, one takes an infinite structure M , colors the copies of a finite
substructure A, and searches for a monochromatic copy of M rather than of some finite substructure (or
more generally, a copy with a bounded number of colors). A structure M is generally shown to have finite
big Ramsey degrees by representing it as an infinite tree and then proving and applying a suitable Ramsey
theorem for such trees, so the techniques are primarily infinitary/set-theoretic combinatorics. Most known
results concern structures in a binary language, but in [6] we proved a result for structures with relations at
possibly all arities, pushing applications of Milliken’s tree theorem to their likely limit.

Theorem 3.4 ([6], special case). Let L be a relational language with finitely many relations of every arity
and let H be a universal countable L-structure. Then H has finite big Ramsey degrees.

3.1.3. Aut(M)-invariant measures on definable sets.
We close by mentioning automorphism-invariant measures on definable sets of ω-categorical structures. These
generalize the classical model-theoretic notion of invariant types, and the problems are equivalent to questions
about the probabilistic/dynamical notion of exchangeability, which in turn is connected to the notions of
graphons from graph limit theory and to higher-order generalizations of Szemerédi regularity. One of the
central questions that arises is the following, where S∞ is the full symmetric group on a countable set.
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Question 3. Let µ be a probability distribution on a certain class of structures (e.g. graphs) on N, and let
G ≤ S∞. For which G is it true that if µ is G-invariant then µ is actually fully S∞-invariant?

Theorem 3.5 (B., Jahel, Marimon [7], informal). Question 3 has a positive answer for many natural
G = Aut(M) for ω-categorical M .

The point is that such S∞-invariant distributions are well-understood objects; for example, S∞-invariant
distributions of graphs on N are equivalent to graphons. We then use this information to give 2ℵ0-many
counterexamples to a longstanding question relating model-theoretic and measure-theoretic notions of
smallness that had only recently been given a negative answer by a complex construction in [15].

3.2. Future work. Again, Conjecture 1 and the classification of ω-categorical monadically NIP structures
are major questions and relate this theme of my research with the previous section. Rather than discuss it
further, we continue to finite big Ramsey degrees.

3.2.1. Big Ramsey degrees.
Currently, relatively few structures are known to have finite big Ramsey degrees. But this may mirror the
early status of Ramsey classes, which were initially thought to be rare, but general tools were developed to
identify them and they are now conjectured to be ubiquitous.

Question 4. Is there a homogeneous structure in a finite relational language with strong amalgamation and
finitely many forbidden substructures that does not have finite big Ramsey degrees?

Exact big Ramsey degrees for binary free amalgamation classes were recently characterized [2], but even
the finiteness problem for higher arities is significantly more complicated, and the subject of ongoing joint
work with several collaborators.

Problem 1. Does every homogeneous structure in a finite relational language with free amalgamation and
finitely many forbidden substructures have finite big Ramsey degrees?

3.2.2. Aut(M)-invariant measures on definable sets.
We close with Aut(M)-invariant measures. The techniques of [7] where primarily extremal and probabilistic
combinatorics, but in ongoing follow-up work we plan to use a more model-theoretic approach to show the
only obstruction to Question 3 is complex (i.e. not NIPk) definable structure in lower arities not definable
from equality, which would imply the following as a special case.

Conjecture 5. Let M be a countable ω-categorical hypergraph with free amalgamation and let µ be an
Aut(M)-invariant measure on M -definable sets. Then µ is S∞-invariant.
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[24] Jaroslav Nešetřil and Vojtěch Rödl, Ramsey classes of set systems, Journal of Combinatorial Theory, Series A 34 (1983),
no. 2, 183–201.

[25] Alf Onshuus and Pierre Simon, Dependent finitely homogneneous rosy structures, arXiv preprint arXiv:2107.02727 (2021).
[26] Pierre Simon, NIP omega-categorical structures: the rank 1 case, arXiv preprint arXiv:1807.07102 (2018).

www-groups.mcs.st-andrews.ac.uk/~pjc/problems/cameronconjs.html

	1. Introduction
	2. Model theory and tame hereditary classes
	2.1. Selected completed work
	2.2. Future work

	3. -categorical and homogeneous structures
	3.1. Completed work
	3.2. Future work

	References

